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General Lagrange’s equations of motion for a system of polymeric molecules are obtained 
in an explicit form. They can be used for simulating molecuiar dynamics of large molecules. 
The molecular conformations are described by internal coordinates, i.e.. bond lengths, valence 
angies, and torsion angles. The equations derived permit any internal degrees of freedom to 
be frozen. The method is applied to an oligopeptide in ar a-helical conformation. Three 
models of the molecule with different degrees of fixation are compared. It is shown that the 
method permits one to increase significantly the time step in molecular dynamrcs calculations. 
C’ i991 Academic Press. Inc. 

1. INTRODUCTION 

The method of molecular dynamics (MD), i.e., computer simulations of 
molecular motions, has been widely used in the recent decade for studying complex 
polymeric molecules such as proteins [ 1, 23 or nucieic acids [2, 31. This method 
has also been used effectively as a tool for determining the three-dimensional struc- 
ture of a macromolecule from NMR data [4]. Now it is widely accepted that M 
simulation of complex polymeric molecules, biopolymers in particular, is \‘ery 
promising [I, 23. 

There are two aspects of the MD method which form its basis: (i) the choice of 
a suitable mechanical model, and (ii) the derivation of the equations of motion of 
the system. 

At the present MD method for polymers uses Cartesian coordinates of atoms to 
represent molecular structure and, correspondingly, Newton’s equations to simulate 
its dynamical behavior. Therefore, at least from the methodological point of 
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view it is “atomic dynamics” rather than molecular dynamics. By choosing the 
independent atoms as a mechanical model one can easily write the explicit 
equations of motion which can be directly integrated by a computer. 

However, the Cartesian coordinates as variables inevitably introduce some 
limitations to the MD simulations. First, many of the 3N degrees of freedom of an 
N-atomic molecule are weakly exited at room temperature [s]. At the same time 
in this “atomic” representation such degrees of freedom are considered as classical 
oscillators, which is not physically justified. On the other hand the empirical poten- 
tials imposed on these degrees of freedom force the atoms to oscillate at very 
high frequencies. This in turn limits the time step in the numerical integration of 
Newtonian equations and reduces the time scale of the motions studied to 
subnanosecond range. Meanwhile, a number of “interesting events” in polyatomic 
molecules take rather long time intervals and are related to intramolecular rotations 
around single bonds. A straightforward solution of these problems obviously consists 
in freezing the covalent structure of the molecule, i.e., bond length, valence angles, 
aromatic rings, etc. Within the frame of the “atomic” representation this can be 
done by imposing explicit constraints on the Cartesian coordinates of certain 
atoms. A few types of constraints have been proposed for this purpose, with the 
fixation of atom-atom distances the simplest and most frequently used [6-91. 
However, the computational problems connected with this approach increase 
rapidly as new constraints are added, and only the fixation of bond lengths appears 
to be practically efficient for large molecules [lo]. 

It would be preferable, evidently, to freeze all the fast internal vibrations by intro- 
ducing an appropriate number of rigid bonds and angles directly into the descrip- 
tion of the molecule. The use of generalized coordinates and Lagrange--Hamilton 
formalism is a classical way to treat such systems. However, for a long time this 
approach was applied only to small molecules of several atoms, for example, to 
n-butane [ 111. The Lagrange equations were derived for every particular molecule 
whereas the derivation of equations for any polymer was considered prohibitively 
complicated [6]. Recently we proposed a new methodology for modelling complex 
molecular systems such as biomacromolecules [12, 131. Among other things it 
allows one to freeze any set of internal coordinates (i.e., bond lengths, bond angles, 
and dihedral angles) while describing the molecular motion by a universal set of dif- 
ferential equations. In this paper we present a complete derivation of the equations 
and the results of their testing on a small fragment of a protein molecule. 

2. THE EQUATIONS OF MOTION FOR A SYSTEM OF 
BRANCHED POLYMER MOLECULES 

In this section we derive the general equations of motion of one or several inter- 
acting branched polymer noncyclic molecules with their conformation specified by 
the internal coordinates. 
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FE. 1. A unified representation of a molecular system in the form of a BKS-tree [12]. Rigid bo&s 
(encircled) are defined as groups of atoms depending on the same set of internal variables. The tree is 
constructed from its origin, which coincides with the origin of the gobal coordinate frame. The tree’s 
structure is determined by internal coordinates, i.e., bond lengths and planar and dihedrai angles, that 
can be arbitrarily frozen (in the example the two molecules with fixed internal structure can move 
independently relative to the coordinate system). Rigid bodies are connected in hinges or nodes (sma!! 
heavy black circles) to which the internal coordinates are attributed. Vi&al bonds are shown by 
broken lines. 

2.1. F’omal Description and Original Equations 

Earlier we demonstrated that any number of molecules with any set of frozen 
internal coordinates (bond lengths inclusive) can be described as a unified tree 
[12]. The tree is composed of atomic groups called rigid bodies as far as their 
internal structure is kept fixed. The description implies the disconnection of cycles 
formed by rigid bodies and special numeration of rigid bodies, and it introduces 
virtual atoms and virtual bonds to connect molecules within the system and impose 
tree topology on it. We refer to such a representation as a BIG-tree [ 12 j. Figure ! 
shows an example of a BKS-tree, with the necessary definitions given in the legend. 

The non-fixed internal coordinates of the BKS-tree form a set of the generalize 
coordinates (0,) of the system. Each variable is attributed to a particular node 
where the unit vector that determines the infinitesimal displacements in the struc- 
ture due to this variable is defined (see Fig. 2). The proper ordering of the internal 
coordinates is extremely important for our purposes. There exists a natural order 
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FIG. 2. Connection of rigid bodies in a BKS-tree. The unit vectors of the variables moving one of 
the two branches are shown. Their order is defmed according to the influence they exert on the unit 
vectors (see the text). Therefore, the first are the torsion and phase angles (4 and @), then the planar 
angle (o), and finally the bond length (b). The phase angle @ is just a dihedral angle added to the 
torsion angle q5 to construct various branches coming from the same node. 

of variables owing to the relations between variables and their unit vectors. If the 
influence between two variables exists, only one of them can move the unit vector 
of another but not vice versa. It is natural that the former would always have a 
smaller index than the latter. The appropriate order of variables attributed to the 
same node is shown in Fig. 2. 

Let us define a set of variables attributed to each atom in the following way. The 
position of the particular atom a (i.e., its radius-vector r,) is determined by the 
chain I’, of generalized coordinates fly (Fig. 3a). They have the order described 
above at each node with the nodes ordered according to the rigid bodies which they 
deline [12]. Let the lower index i run from 1 to n, in succession. Define also a set 
of atoms dk defined for the variable 8,, which comprises the atoms having positions 
depending on Ok (Fig. 3b). 

To derive the general equations for any BKS-tree we start from the Lagrangian 
equations of motion [14] 

0, k = 1, 2, . . . . n. 

The Lagrangian function L is the difference between the kinetic energy T(O, 4) 
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b 

Frc. 3. Two sets attributed to each atom and each variable, respectiveiy. {a) The chain of variab!es 
Vz determining the position of a particular atom x From one to four variables of the chain are defined 
in each node. (b) The set d, of atoms influenced by the generalized variable ok. 

depending on vectors of generalized variables and velocities and the potential 
energy U(6). Substituting x:, [m,ii/- U(O)] for L in the Lagrange equations we 
obtain 

In recent papers 112, 13, 151 the algorithm for rapid calculation of the derivatives 
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of the conformational energy in the right-hand part of Eq. (2) have been described 
for any molecular system and any set of variables. 

Our aim is to obtain the derivatives in the left-hand part of Eq. (2). 
The infinitesimal displacement dr, is expressed by the formula 

dr, = 2 [Sic’ x (r, - re) d0; + (1 - Si) e; de;], 
ix 1 

(3) 

where ey are the unit vectors corresponding to the variable Sjl; while re is the 
radius-vector of its node. The upper index CI indicates that the variables are taken 
from the chain V,. Si is the indicator of the type of variable: it is equal to unity 
or zero for the variable angles or bond lengths, respectively. The first term in the 
right-hand part of the formula describes the elementary rotation of the atom a 
around the axis of rotation defined by the unit vector e:. The second term describes 
just the translation along the unit vector of the variable bond. 

2.2. Computation of (d/dt)[F,(ai,/a8,)] 

From Eq. (3) we obtain 

i,= f [Sieix(r,-rf).0i+(1-Si)ei.8i] 
i= I 

(41 

(here and below we omit the upper index c( for the sake of brevity). The partial 
derivative x ai,/&, is then equal to 

2=S,e,xr,,+(l-S,)e,, 
k 

(5) 

where ralk stands for (r, - rz). To differentiate Eqs. (4) and (5) with respect to time 
one should calculate the derivatives de,/dt and dr,,,/dt. The increments dei and dry 
are the sums of elementary rotations and displacements (only rotations for de;): 

i-l 
de, = C S,,,e,, x ej . de,,, 

n, = I 
(6) 

i- 1 
dry = c [Smem x (re - rflt) . de, + (1 - S,) e, . de,]. (7) 

m=l 

By subtracting relation (7) from (3) we obtain also 

i-1 

drmli = c S,,,e,, x rr,,i . de,,, + 2 [S sin x rrh .de,,+(l-S,)e,.de,,,l. (8) 
m = 1 ,,I = i 
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The corresponding time derivatives are given by 

Using these time derivatives one can differentiate Eqs. (4) and (5). The required 
time derivative can be then expressed by 4 single sums and 16 double sums 
(n x b x c stands for a x (b x c); the intervening computations are omitted): 

g tx$ = s (1-Sk)Siek(eixrX.i)81+ f (l-Sk)(l-Si)ekeL~#r 
dt ( ‘1 x i-1 i=l 

+ 2 f s,s,,,si( ek x rs;k)(ej x em x h,,,,) . 8,,8, 
i=l nt=i 

+ f f sk( 1 - s,,,) s;(ek x r,.,)(ej x em) $,,8j 
i-1 m-i 

n, k-l 

+ 1 c SkS,n(l-Sj)(e,,lxekxr,.k)ej~B,,e, 
i=l m=l 

nT n + 2 c Sk(l-S,)(l-Sj)(ekxe,,)e;.B,,Bj 
i = 1 i,l = k 

I 1 

+ i i Sks,,,( 1 - si)(ek x e,, x r, ,,) e, Q,,di 
i=l mzk 
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+ z ‘Cl SkSm( 1 - S,)(ek x rorlk)(ern x ei) .8,,8, 
i=l m=l 
n,, k- I 

+ 2 1 (1 -Sk) SmSi(em X ek)(eiX r,ii) .~,,,~i 

i=l m=l 

+ f ‘jj’ (1 - S,) SmS,ek(em x ei x raji). 8,8, 
i=l m=l 

+ f $J (l-Sk)SmSiek(eixe,xraim)~8,,Bi 
j-=1 ME; 

+ f jJ (l-S,)(l--S,)Sie,(eixe,)~C9,Bi 
;=l m=i 

n, k-l 

+ c c (1 -Sk) s,,(l -S;)(e,, x ek) ei.8moi 

j z= 1 nz = 1 

+ 2 ‘i’ (l-Sk)S,,(l-S;)ek(emxe;)‘eme;. 
is1 m=l 

(12) 

2.3. Computatioil of gai$/ae,). 
The derivatives of em and rorim with respect to Ok necessary for further COmpUta- 

tions can be derived easily from Eqs. (6) and (8): 

for 1y1> k 
for HZ 6 k 

(13) 

abnz Sk(ek x e&?) for m>k 
I= 
aek Sk(ek x %lk) + t1 -sk) ek for m d k. 

(14) 

Now one can obtain Eq. (4) squared and differentate it applying Eqs. (13) and (14). 
The ultimate formula for the second term in the right-hand part of Lagrange’s 

equation (3) is given by 

Sk,Sm,Si(ek x e, x rajm)(ei x rali) .8,8, 
i-1 m=kfl 

+ f 

k 

c sks,si(ern x ek x r&)(e; x ror/;). ombj 

i-1 m=l 

+ 5 5 (l-Sk)S,Si(e,,xek)(ejxra;;).Bme; 
i=l m=l 

+ f 2 SkSm(l-Si)(ekXe,,X r,~,)e,~8,8, 
i=l m=k+l 
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,!= k 

+ 1 C SkSm(l-Sj)(e,,,xekxr,~,,)ei.B,~i 

i=l m=l 

+ 2 f (l-S,)S,,(l-Si)(e,*xe,)e,.8,,6; 
i = I rrr = 1 

+ 5 .f S,( 1 - Si) Sm(em x F,:,,)(ek xej). B,,,& 
i=k+l m=l 

+ f 5 Sir(l-Sm)(l-S,i(e~xe,,)e~~e,,,Bi. ;;sj 

i=l ,w=k+l 

2.4. The Ultimate Fom of the Equations 

If we substitute the right-hand parts of Eqs. (12) and (15) into Eq. (2) and 
simplify the expression, we obtain 

l.‘, 

& 171z i;g [ S,,S,(e, x ra!k)(ei x T,:~) + Sk(l - S,)(e, x r, k) ei 

+ (1 - S,) Siek(el x T~,~) + (1 - S,)( 1 - Sij eke,] . is, 
1% 

+ 2 [SkSf(e, x rz;k)(ei x ei x r,,,i) + (1 - Sk) Sfe,(e! x ei x r,:i)] .iif 
i= I 

+ 2. g ‘2’ [SkS,S,(e, x r,.k)je,iz x e, x r,,i) 
i=2 m-1 

+ S,( 1 - Si) S,,(e, x r+)(em x e,) + (I - S,k) S,Smek(em x ei x rX:i) 
T 

$ (I- S,)(l - Si) Sme,(e,, xe,)] -4,,8rj = -g. 
k 

(16) 

The onlyy trick sometimes used in the course of these algebraic computations is 
the change of the summation order in the double sums: 

The symbol V, over the braces indicates that within them the variables are rmm- 
bered in succession according to their order in the chain VX. One should note that 
the above computations are strongly dependent on the numeration of the 
generalized variables (the rule is discussed above and in the legend to Fig. I?). In 
fact, the indices i, k, m within the braces in Eq. (16) are functions of tl. When the 
global numeration is used (i.e., each variable has its unique index) and i, j, k run 
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from 1 to the total number of variables nvar, the equations are given in the general 
form 

In this form of the equations ski, bki, and ckinl are calculated by summation taking 
the tree topology into account. As a matter of fact it can be done in different ways, 
in particular, by a straightforward summation of the terms from Eqs. (16) or using 
a procedure which takes the tree topology into account [12]. In the last case these 
computations take only a minor part of the total computation time. 

3. A TEST EXAMPLE: MOLECULAR DYNAMICS OF AN U-HELIX 

To test the equations and the computational scheme we applied the method to 
an oligopeptide (Ala), , having the cc-helical starting conformation. The solvent 
effects are neglected; i.e., one molecule in a vacuum is considered. 

The molecular models tested had different sets of free variables. To check the 
validity of the equations we carried out several probe integrations in forward and 
backward time directions for each model. The conservation of energy, momentum, 
and angular momentum of the molecule has been checked. In addition, for a com- 
pletely unfixed molecule we compared the trajectories calculated by Eqs. (16) and 
(18) and those obtained from a traditional MD simulation in Cartesian coor- 
dinates. All tests confirmed the correctness of the explicit Lagrangian equations 
derived in the previous section. 

In all test calculations the trajectories of 110 time steps [7] are obtained by 
integrating Eqs. (16) and (18). Before this the molecule was slowly heated up to the 
temperature of ~300 K and equilibrated during 4 ps. This time was sufhcient for 
the mean fluctuation of the kinetic energy (6K) to be stabilized. This value is large 
for a non-equilibrium system and decreases to a minimum as equilibrium is 
approached [16]. The temperature of the system was calculated as 

T,2. (0 
N.k, ' 

where N is the number of internal degrees of freedom, K is the instantaneous kinetic 
energy, and kB is the Boltzmann constant. 

Since the system of equations given by Eq. (18) is not resolved with respect to 8 
the corresponding linear algebraic system is solved at each time step by the 
Kholezki algorithm [17]. The equations are integrated by the method of Beeman 
[lS] with the fourth-order prediction formulas for generalized velocities. In the 
calculations we use the empirical potentials compiled from those of ECEPP 
[19,20] and CHARMM [21]. Such a mixing seems quite satisfactory in view of 
the limited purposes of our numerical tests. 
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Three models of the molecule were chosen for comparisons. The first one consists 
of 93 atoms and includes all hydrogen atoms explicitly. 411 the bond lengths in :he 
molecule are fixed at their equilibrium values. In addition the model has fix.ed 
phase angles (see Fig. 21, as far as at present there are no proper empirical poten- 
tials for these angles in the literature. With these fixations the molecule has 
133 degrees of freedom. 

The second model differs from the first one in that all its valence angles are 5ced. 
-4s a result the number of variables describing the structure decreases to 42. In the 
third model we use united atoms instead of the alanine side chains, thus excluding 
the torsion angles of the methyl groups, In addition, :he torsion angle rotating the 
hydroxyl group at the C-terminus is fixed. This model is described by 32 degrees or 
freedom. 

The accuracy of the calculations is compared using the conservation of the total 
energy as an indicator. For each test trajectory the averag: total energy (g”\ is 
computed as well as the root mean square deviation t.,‘(BE-). The ratio 

Is used for comparisons because (E) varies strongly from one model to another. 
These differences arise first from the fact that the kinetic energy of the molecule a: 
the same temperature depends on the number of degrees of freedom. The second 
reason is that the interactions within the rigid bodies composing the BIG-tree are 
always discarded; i.e., only the varying parts of the potential energy are calculated. 

With the small time step h = 0.5 fs the 6, and (E) values computed from the 
loo-step trajectories (the first 10 steps of the 1 lo-step trajectory are ignored as in 
[7]) were 0.4 x lo-‘, 0.4 x 10 P5, and 0.8 x 10mm6 and 23.5, -22~5~ -26.8 kcal!mol 
for the three models considered, respectively. When the time step increases the 
values of (5, also increase, with the ratios between them being approximately oon- 
stant. With the time step of 1 fs commonly used in MD simulations of proteins the 
6 5 value for the first model equals approximately lo--‘. This level of accuracy is 
reached with the h values 9 and 13 fs for the other two models, respectively. 

In constructing the three models of an a-helix we tried in each succeeding model 
to freeze the degrees of freedom corresponding to the fastest oscillations in the 
previous model. Note that unlike the case of Newton’- 3 equations the additional 
freezing of the molecules makes the computational task less expensive. For instance, 
one step of integration for the three models used in this paper takes 6.0, 1.1, and 
3.5 s, respectively, on the computer (EClOSlJ. In the first case the solution cf the 
linear algebraic system of 133 equations takes the major part of the computer time. 
In the other two cases this system is much smaller and the calculation of the energy 
gradient appears to be even more time consuming. These results show that the time 
step in MD simulations using Eqs. (18) can be increased significantly by exc!udlng 
the fast degrees of freedom from the system. 

A number of computational problems are still to be solved. Finding an effective 
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method for solving the linear algebraic system given by Eqs. (18) is probably the 
most important one. Nevertheless it seems clear that by using Eqs. (16) and (18) 
one obtains useful tools for investigating the dynamic properties of complex 
polymeric molecules. 
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